A Novel Dynamin-Related Protein Has Been Recruited for Apicoplast Fission in Toxoplasma gondii

نویسندگان

  • Giel G. van Dooren
  • Sarah B. Reiff
  • Cveta Tomova
  • Markus Meissner
  • Bruno M. Humbel
  • Boris Striepen
چکیده

BACKGROUND Apicomplexan parasites cause numerous important human diseases, including malaria and toxoplasmosis. Apicomplexa belong to the Alveolata, a group that also includes ciliates and dinoflagellates. Apicomplexa retain a plastid organelle (the apicoplast) that was derived from an endosymbiotic relationship between the alveolate ancestor and a red alga. Apicoplasts are essential for parasite growth and must correctly divide and segregate into daughter cells upon cytokinesis. Apicoplast division depends on association with the mitotic spindle, although little is known about the molecular machinery involved in this process. Apicoplasts lack the conserved machinery that divides chloroplasts in plants and red algae, suggesting that these mechanisms are unique. RESULTS Here, we demonstrate that a dynamin-related protein in Toxoplasma gondii (TgDrpA) localizes to punctate regions on the apicoplast surface. We generate a conditional dominant-negative TgDrpA cell line to disrupt TgDrpA functions and demonstrate that TgDrpA is essential for parasite growth and apicoplast biogenesis. Fluorescence recovery after photobleaching and time-lapse imaging studies provide evidence for a direct role for TgDrpA in apicoplast fission. CONCLUSIONS Our data suggest that DrpA was likely recruited from the alveolate ancestor to function in fission of the symbiont and ultimately replaced the conserved division machinery of that symbiont.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of potential apicoplast associated therapeutic targets in human and animal pathogen Toxoplasma gondii ME49

UNLABELLED Toxoplasma gondii ME49 is an obligatory intracellular apicomplexa parasite that causes toxoplasmosis in humans, domesticated and wild animals. Waterborne outbreaks of acute toxoplasmosis worldwide reinforce the transmission of Toxoplasma gondii ME49 to humans through contaminated water and may have a greater epidemiological impact than previously believed. In the quest for drug and v...

متن کامل

Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote

Toxoplasma gondii and other apicomplexan parasites contain a peculiar non-photosynthetic plastid called the apicoplast, which is essential for their survival. The localization of autophagy-related protein ATG8 to the apicoplast in several apicomplexan species and life stages has recently been described, and we have shown this protein is essential for proper inheritance of this complex plastid i...

متن کامل

Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum.

A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or "apicoplast," is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investig...

متن کامل

Phosphatidylinositol 3-Monophosphate Is Involved in Toxoplasma Apicoplast Biogenesis

Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that ...

متن کامل

Inhibitors of nonhousekeeping functions of the apicoplast defy delayed death in Plasmodium falciparum.

Targeting of apicoplast replication and protein synthesis in the apicomplexan Toxoplasma gondii has conventionally been associated with the typical "delayed death" phenotype, characterized by the death of parasites only in the generation following drug intervention. We demonstrate that antibiotics like clindamycin, chloramphenicol, and tetracycline, inhibitors of prokaryotic protein synthesis, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009